Aerobic Denitrifiers Isolated from Diverse Natural and Managed Ecosystems

Microb Ecol. 2000 Feb;39(2):145-152. doi: 10.1007/s002480000009.

Abstract

Twenty-eight bacterial strains were isolated from an ecosystem adapted to fluctuating oxic-anoxic conditions. This ecosystem comprised a mixture of different natural and wastewater treatment environments. Among the 28 strains isolated, 10 exhibited aerobic denitrifying activity, i.e., co-respiration of oxygen and nitrate and simultaneous production of nitrite by 4 of them and of nitrogen gas by the remaining 6. Comparisons between the 16S rDNA sequences of the 10 strains showed that 3 of them were identical to M. aerodenitrificans, whereas RAPD profiles showed that the 3 strains were identical to each other but that they were different from M. aerodenitrificans. This implies that alternating aerobic-anoxic conditions allowed the isolation of a new strain of this aerobic denitrifier. Moreover, other denitrifying bacteria belonging to the genera Paracoccus, Thiobacillus, Enterobacter, Comamonas, and Sphingomonas were isolated in this way. These data imply that a wide variety of bacteria are able to carry out this type of metabolism. M. aerodenitrificans was also detected in methanogenic, denitrifying, nitrifying, phosphate removal, and activated sludge ecosystems by two-step PCR amplification. After 4 months of acclimation to oxic-anoxic phases, the strain was also detected in a canal and in a pond. This suggests that there is no specific natural ecological niche for aerobic denitrifiers but, as soon as selective pressure such as alternating aeration conditions is applied, this metabolism is amplified.