Mechanisms of agonist-dependent and -independent desensitization of a recombinant P2Y2 nucleotide receptor

Mol Cell Biochem. 2000 Feb;205(1-2):115-23. doi: 10.1023/a:1007018001735.

Abstract

UTP activates P2Y, receptors in both 1321N1 cell transfectants expressing the P2Y2 receptor and human HT-29 epithelial cells expressing endogenous P2Y, receptors with an EC50 of 0.2-1.0 microM. Pretreatment of these cells with UTP diminished the effectiveness of a second dose of UTP (the IC50 for UTP-induced receptor desensitization was 0.3-1.0 microM for both systems). Desensitization and down-regulation of the P2Y2 nucleotide receptor may limit the effectiveness of UTP as a therapeutic agent. The present studies investigated the phenomenon of P2Y2 receptor desensitization in human 1321N1 astrocytoma cells expressing recombinant wild type and C-terminal truncation mutants of the P2Y2 receptor. In these cells, potent P2Y2 receptor desensitization was observed after a 5 min exposure to UTP. Full receptor responsiveness returned 5-10 min after removal of UTP. Thapsigargin, an inhibitor of Ca2+-ATPase in the endoplasmic reticulum, induced an increase in the intracellular free calcium concentration, [Ca2+]i, after addition of desensitizing concentrations of UTP, indicating that P2Y2 receptor desensitization is not due to depletion of calcium from intracellular stores. Single cell measurements of increases in [Ca2+]i induced by UTP in 1321N1 cell transfectants expressing the P2Y2 receptor indicate that time- and UTP concentration-dependent desensitization occurred uniformly across a cell population. Other results suggest that P2Y2 receptor phosphorylation/dephosphorylation regulate receptor desensitization/resensitization. A 5 min preincubation of 1321N1 cell transfectants with the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), reduced the subsequent response to UTP by about 50%, whereas co-incubation of PMA with UTP caused a greater inhibition in the response. The protein phosphatases-1 and -2A inhibitor, okadaic acid, partially blocked resensitization of the receptor. Furthermore, C-terminal truncation mutants of the P2Y2 receptor that eliminated several potential phosphorylation sites including two for PKC were resistant to UTP-, but not phorbol ester-induced desensitization. Down regulation of protein kinase C isoforms prevented phorbol ester-induced desensitization but had no effect on agonist-induced desensitization of wild type or truncation mutant receptors. These results suggest that phosphorylation of the C-terminus of the P2Y2 receptor by protein kinases other than protein kinase C mediates agonist-induced receptor desensitization. A better understanding of the molecular mechanisms of P2Y2 nucleotide receptor desensitization may help optimize a promising cystic fibrosis pharmacotherapy based on the activation of anion secretion in airway epithelial cells by P2Y, receptor agonists.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Astrocytoma / metabolism
  • Calcium / metabolism
  • Cell Adhesion
  • Cell Line
  • Colon / metabolism
  • Dose-Response Relationship, Drug
  • Epithelium / metabolism
  • Humans
  • Inositol Phosphates / metabolism
  • Ionophores / pharmacology
  • Mutagenesis
  • Okadaic Acid / pharmacology
  • Phorbol Esters / pharmacology
  • Phosphoric Monoester Hydrolases / metabolism
  • Protein Kinase C / metabolism
  • Purinergic P2 Receptor Agonists*
  • Receptors, Purinergic P2 / chemistry
  • Receptors, Purinergic P2 / metabolism*
  • Receptors, Purinergic P2Y2
  • Recombinant Proteins / metabolism
  • Time Factors
  • Tumor Cells, Cultured
  • Uridine Triphosphate / pharmacology

Substances

  • Inositol Phosphates
  • Ionophores
  • P2RY2 protein, human
  • Phorbol Esters
  • Purinergic P2 Receptor Agonists
  • Receptors, Purinergic P2
  • Receptors, Purinergic P2Y2
  • Recombinant Proteins
  • Okadaic Acid
  • Protein Kinase C
  • Phosphoric Monoester Hydrolases
  • Calcium
  • Uridine Triphosphate