Signaling from G protein-coupled receptors to ERK5/Big MAPK 1 involves Galpha q and Galpha 12/13 families of heterotrimeric G proteins. Evidence for the existence of a novel Ras AND Rho-independent pathway

J Biol Chem. 2000 Jul 14;275(28):21730-6. doi: 10.1074/jbc.M002410200.

Abstract

The regulation of gene expression by cell surface receptors often involves the stimulation of signaling pathways including one or more members of the MAPK superfamily of serine-threonine kinases. Upon their activation in the cytosol, MAPKs can translocate to the nucleus and affect the activity of a variety of transcription factors. Recently, it has been observed that a novel member of the MAPK superfamily, ERK5, can be potently activated by transforming G protein-coupled receptors (GPCRs) and that ERK5 participates in the regulation of c-jun expression through the activation of MEF2 transcription factors. How cell surface receptors, including GPCRs, stimulate ERK5 is still poorly understood. In this study, we have used transiently transfected COS-7 cells to begin delineating the biochemical route linking GPCRs to ERK5. We show that receptors that can couple to the G(q) and G(12/13) families of heterotrimeric G proteins, m1 and thrombin receptors, respectively, but not those coupled to G(i), such as m2 receptors, are able to regulate the activity of ERK5. To investigate which heterotrimeric G proteins signal to ERK5, we used a chimeric system by which Galpha(q)- and Galpha(13)-mediated signaling pathways can be conditionally activated upon ligand stimulation. Using this system, as well as the expression of activated forms of G protein subunits, we show that the Galpha(q) and Galpha(12/13) families of heterotrimeric G proteins, but not the Galpha(i), Galpha(s), and betagamma subunits, are able to regulate ERK5. Furthermore, we provide evidence that the stimulation of ERK5 by GPCRs involves a novel signaling pathway, which is distinct from those regulated by Ras and Rho GTPases.

MeSH terms

  • Animals
  • COS Cells
  • Carbachol / pharmacology
  • DNA-Binding Proteins / metabolism
  • GTP-Binding Protein alpha Subunits, G12-G13
  • GTP-Binding Protein alpha Subunits, Gq-G11
  • GTP-Binding Proteins / metabolism*
  • Genes, Reporter
  • Genes, jun
  • Heterotrimeric GTP-Binding Proteins / metabolism*
  • Kinetics
  • MEF2 Transcription Factors
  • Mitogen-Activated Protein Kinase 7
  • Mitogen-Activated Protein Kinases / metabolism*
  • Myogenic Regulatory Factors
  • Promoter Regions, Genetic
  • Receptors, Cell Surface / physiology*
  • Receptors, Muscarinic / physiology
  • Receptors, Thrombin / physiology
  • Recombinant Fusion Proteins / metabolism
  • Recombinant Proteins / metabolism
  • Signal Transduction / drug effects
  • Signal Transduction / physiology*
  • Thrombin / pharmacology
  • Transcription Factors / metabolism
  • Transfection
  • ras Proteins / metabolism

Substances

  • DNA-Binding Proteins
  • MEF2 Transcription Factors
  • Myogenic Regulatory Factors
  • Receptors, Cell Surface
  • Receptors, Muscarinic
  • Receptors, Thrombin
  • Recombinant Fusion Proteins
  • Recombinant Proteins
  • Transcription Factors
  • Carbachol
  • Mitogen-Activated Protein Kinase 7
  • Mitogen-Activated Protein Kinases
  • Thrombin
  • GTP-Binding Proteins
  • GTP-Binding Protein alpha Subunits, G12-G13
  • GTP-Binding Protein alpha Subunits, Gq-G11
  • Heterotrimeric GTP-Binding Proteins
  • ras Proteins