Different methods are available for the treatment of osseous defects. In recent years the use of autologous bone was established as the golden standard. However, significant disadvantages are limited availability of the bone graft and its harvest implies additional morbidity for the patient. Alternatives to the use of autologous bone, as allogeneic bone from bone banks or biomaterials like hydroxyapatite are therefore of special interest. However, the currently available methods have severe disadvantages; allogenic bone carries a high risk of transmitting infectious diseases, most biomaterials show an unsatisfying osseous integration as well as prolonged healing with disability for the patient. Therefore, the aim has to be the development of a biomaterial that is as close as possible to human bone. In this in vitro study the natural bone mineral Bio-Oss/Orthos was used as a matrix for human osteoblast-like cells isolated from bone marrow of healthy patients. Even after three months the cell showed typical osteblast-like behaviour. Histologic evaluation demonstrated the ability of Bio-Oss/Orthos to guide cell growth within its matrix structure and therefore mimics in vivo situation of the healthy bone. The results show that culturing human osteoblast-like cells under standardised conditions is possible and that the combination of human osteoblast-like cell with an appropriate matrix may have the potential for a new treatment option of osseous defects.