In antibody-directed enzyme prodrug therapy, an enzyme conjugated to an antitumor antibody is given i.v. and localizes in the tumor. A prodrug is then given, which is converted to a cytotoxic drug selectively in the tumor. Ten patients with colorectal carcinoma expressing carcinoembryonic antigen received antibody-directed enzyme prodrug therapy with A5B7 F(ab')2 antibody to carcinoembryonic antigen conjugated to carboxypeptidase G2 (CPG2). A galactosylated antibody directed against the active site of CPG2 (SB43-gal) was given to clear and inactivate circulating enzyme. A benzoic acid mustard-glutamate prodrug was given when plasma enzyme levels had fallen to a predetermined safe level, and this was converted by CPG2 in the tumor into a cytotoxic form. Enzyme levels derived from quantitative gamma camera imaging and from direct measurements in plasma and tumor biopsies showed that the median tumor:plasma ratio of enzyme exceeded 10000:1 at the time of prodrug administration. Enzyme concentrations in the tumor (median, 0.47 units g(-1)) were sufficient to generate cytotoxic levels of active drug. The concentration of prodrug needed for optimal conversion (Km) of 3 microM was achieved. Prodrug conversion to drug was shown by finding detectable levels of drug in plasma. There was evidence of tumor response; one patient had a partial response, and six patients had stable disease for a median of 4 months after previous tumor progression (one of these six had a tumor marker response). Manageable neutropenia and thrombocytopenia occurred. Conditions for effective antitumor therapy were met, and there was evidence of tumor response in colorectal cancer.