Previously, coexpression of smooth and skeletal differentiation markers, but not myogenic regulatory factors (MRFs), was observed from E16.5 mouse fetuses in a small percentage of diaphragm level esophageal muscle cells, suggesting that MRFs are not involved in the process of initiation of developmentally programmed transdifferentiation in the esophagus. To investigate smooth-to-skeletal esophageal muscle transition, we analyzed Myf5nlacZ knock-in mice, MyoD-lacZ and myogenin-lacZ transgenic embryos with a panel of the antibodies reactive with myogenic regulatory factors (MRFs) and smooth and skeletal muscle markers. We observed that lacZ-expressing myogenic precursors were not detected in the esophagus before E15.5, arguing against the hypothesis that muscle precursor cells populate the esophagus at an earlier stage of development. Rather, the expression of the MRFs initiated in smooth muscle cells in the upper esophagus of E15.5 mouse embryos and was immediately followed by the expression of skeletal muscle markers. Moreover, transdifferentiation was markedly delayed or absent only in the absence of Myf5, suggesting that appropriate initiation and progression of smooth-to-skeletal muscle transdifferentiation is Myf5-dependent. Accordingly, the esophagus of Myf5(-/-):MyoD(-/-)embryos completely failed to undergo skeletal myogenesis and consisted entirely of smooth muscle. Lastly, extensive proliferation of muscularis precursor cells, without programmed cell death, occurred concomitantly with esophageal smooth-to-skeletal muscle transdifferentiation. Taken together, these results indicate that transdifferentiation is the fate of all smooth muscle cells in the upper esophagus and is normally initiated by Myf5.