The present report deals with an axonal tract-tracing procedure in rat enabling visualization of anterogradely transported biotinylated dextran amine (BDA) combined with immnunocytochemical detection of Fos protein following electrical stimulation of the brain. This method allows us to evaluate whether a given structure, receiving both injection of BDA and electrical stimulation, elicits neuronal activation in another part of the brain via direct or indirect projections. We have used the method at the light microscopic level to determine the connectivity of the sensorimotor cortex in the rat. In various parts of the forebrain and brainstem, BDA-labeled fibers originating from the cortex were observed in close apposition to Fos-like immunoreactive cells (FLI) activated by stimulation. This result suggests a direct (probably monosynaptic) projection. On the contrary, FLI neurons were observed in areas devoid of direct afferents, indicating a cascade of activations. The method described in this protocol is applicable for functional anatomy purposes elsewhere within the central nervous system. It constitutes a preliminary step in identifying the validity of a pathway before examination of the reality of the monosynaptic relationship at the electron microscopic level.