The arterial blood PO(2) is increased in the prone position in animals and humans because of an improvement in ventilation (VA) and perfusion (Q) matching. However, the mechanism of improved VA/Q is unknown. This experiment measured regional VA/Q heterogeneity and the correlation between VA and Q in supine and prone positions in pigs. Eight ketamine-diazepam-anesthetized, mechanically ventilated pigs were studied in supine and prone positions in random order. Regional VA and Q were measured using fluorescent-labeled aerosols and radioactive-labeled microspheres, respectively. The lungs were dried at total lung capacity and cubed into 603-967 small ( approximately 1.7-cm(3)) pieces. In the prone position the homogeneity of the ventilation distribution increased (P = 0.030) and the correlation between VA and Q increased (correlation coefficient = 0.72 +/- 0.08 and 0.82 +/- 0.06 in supine and prone positions, respectively, P = 0.03). The homogeneity of the VA/Q distribution increased in the prone position (P = 0.028). We conclude that the improvement in VA/Q matching in the prone position is secondary to increased homogeneity of the VA distribution and increased correlation of regional VA and Q.