To investigate the molecular basis for the specificity of ligand recognition in human kinin B(1) (B(1)R) and B(2) (B(2)R) receptors, we constructed a series of chimeric receptors by progressively replacing, from the N to the C terminus, the human B(2)R domains by their B(1) counterparts. The chimeric construct possessing the C-terminal tail and the transmembrane domain VII (TM VII) of the B(2)R (construct 6) displayed 7- and 20- fold decreased affinities for the B(1) agonist [(3)H]desArg(10)-kallidin (desArg(10)-KD) and the B(1) antagonist [(3)H]desArg(10)-[Leu(9)]-KD respectively, as compared with the wild-type B(1)R. Moreover, the substitution of the B(1) TM VII by its B(2) homologue TM increased the affinity for the pseudopeptide antagonists, Hoe140 and NPC 567. High affinity for desArg(10)-KD binding was fully regained when the B(2) residue Thr(287) was replaced in construct 6 by the corresponding B(1) Leu(294) residue. When the B(2) residue Tyr(295) was exchanged with the corresponding B(1) Phe(302), high affinity binding for both agonist and antagonist was recovered. Moreover, the L294T and F302Y mutant B(1)R exhibited 69- and 6.5-fold increases, respectively, in their affinities for the B(2) receptor antagonist, Hoe140. Therefore we proposed that Leu(294) and Phe(302) residues, which may not be directly involved in the binding of B(1)R ligands and, hence, their Thr(287) and Tyr(295) B(2) counterparts, are localized in a receptor region, which plays a pivotal role in the binding selectivity of the peptide or pseudopeptide kinin ligands.