Based on the peculiar spatial array of the active sites in the internal chamber of the multicatalytic proteasome, as derived from the X-ray structure of yeast proteasome, homo- and heterobivalent inhibitors were designed and synthesized to exploit the principle of multivalency for enhancing inhibition potency. Peptidic bis-aldehyde compounds of the octapeptide size were synthesized to address adjacent active sites, whilst a PEG spacer with a statistical length distribution of 19-25 monomers was used to link two identical or different tripeptide aldehydes as binding heads. These bis-aldehyde compounds were synthesized applying both methods in solution and solid phase peptide synthesis. Bivalent binding was observed only for the PEG-spaced inhibitors suggesting that binding from the primed side prevents hemiacetal formation with the active site threonine residue.