The cerebellar medulloblastoma (WHO Grade IV) is a highly malignant, invasive embryonal tumor with preferential manifestation in children. Several molecular alterations appear to be involved, including isochromosome 17q and the p53, PTCH, and beta-catenin gene mutations. In this study, 46 sporadic medulloblastomas were screened for the presence of mutations in genes of the Wnt signaling pathway (APC and beta-catenin). Single-strand conformational polymorphism (SSCP) analysis followed by direct DNA sequencing revealed 3 miscoding APC mutations in 2 (4.3%) medulloblastomas. One case contained a GCA-->GTA mutation at codon 1296 (Ala-->Val), and another case had double point mutations at codons 1472 (GTA-->ATA, Val-->Ile) and 1495 (AGT-->GGT, Ser-->Gly). Miscoding beta-catenin mutations were detected in 4 tumors (8.7%). Three of these were located at codon 33 (TCT -->TTT, Ser-->Phe) and another at codon 37 (TCT-->GCT, Ser-->Ala). Adenomatous polyposis coli (APC) gene and beta-catenin mutations were mutually exclusive and occurred in a total of 6 of 46 cases (13%). Although germline APC mutations are a well established cause of familial colon and brain tumors (Turcot syndrome), this study provides the first evidence that APC mutations are also operative in a subset of sporadic medulloblastomas.