Selective introduction of genes conferring chemosensitivity on proliferating tumor cells can be used to treat cancer. We investigated the efficacy of retrovirus-mediated gene transfer of the herpes simplex virus thymidine kinase (HSV-TK) gene to murine neuroblastoma cell lines (neuro-2a) in vitro and in vivo. Retrovirus-mediated HSV-TK gene transfer to the neuro-2a cells resulted in sensitivity to ganciclovir (GCV) in vitro. In A/J mice, tumors produced from HSV-TK transduced neuro-2a cells regressed after GCV treatment. Intratumoral injection of recombinant retrovirus expressing HSV-TK gene also inhibited growth of the tumor established in A/J mice. These results demonstrate that HSV-TK gene therapy might be a feasible approach for inhibiting the growth of neuroblastoma.