Apoptosis appears to be implicated in the pathogenesis and therapeutic applications of cancer. In this study we investigated the induction of apoptosis by 4-aminopyridine (4-AP), a K(+) channel blocker, and its mechanism in HepG2 human hepatoblastoma cells. 4-AP reduced cell viability and induced DNA fragmentation, a hallmark of apoptosis, in a dose-dependent manner. In addition, 4-AP induced a sustained increase in intracellular Ca(2+) concentration, which was completely inhibited by the extracellular Ca(2+) chelation with EGTA. 4-AP also induced Mn(2+) influx, indicating that the 4-AP-induced increased intracellular Ca(2+) levels were due to activation of Ca(2+) influx pathway. 4-AP also depolarized membrane potential that was measured by using di-O-C(5)(3), a voltage-sensitive fluorescent dye. 4-AP-induced Ca(2+) influx was significantly inhibited not by voltage-operative Ca(2+) channel blockers (nifedipine or verapamil), but by flufenamic acid (FA), a known nonselective cation channel blocker. Quantitative analysis of apoptosis by the flow cytometry revealed that treatment with either FA or BAPTA, an intracellular Ca(2+) chelator, significantly inhibited the 4-AP-induced apoptosis. Taken together, these results suggest that the observed 4-AP-induced apoptosis in the HepG2 cells may result from Ca(2+) influx through the activation of voltage-sensitive Ca(2+)-permeable non-selective cation channels. These results further suggest that membrane potential change by modulation of K(+) channel activity may be involved in the mechanism of apoptosis in human hepatoma cells.
Copyright 2000 S. Karger AG, Basel