Reactive oxygen species and growth factors stimulate similar intracellular signal transduction events including activation of Src kinase family members and extracellular signal-regulated kinases (ERK1/2). A potentially important downstream effector of Src and ERK1/2 is p90 ribosomal S6 kinase (p90RSK), which plays an important role in cell growth by activating several transcription factors as well as the Na(+)/H(+) exchanger. In the present study, we determined whether H(2)O(2) activates p90RSK to gain insight into signal transduction mechanisms activated by reactive oxygen species. H(2)O(2) (200 microM) stimulated ERK1/2 and p90RSK activity in lymphocytes, endothelial cells, and fibroblasts. The MEK-1 inhibitor, PD98059 (30 microM), inhibited H(2)O(2)-mediated activation of ERK1/2 but not of p90RSK. An essential role for Fyn and Ras in p90RSK activation was suggested by five findings. 1) The tyrosine kinase inhibitor, herbimycin A, and the specific Src kinase family inhibitor, PP1, blocked p90RSK activation by H(2)O(2) in a concentration-dependent manner. 2) p90RSK activation by H(2)O(2) was significantly reduced in fibroblasts derived from transgenic mice deficient in Fyn, but not c-Src. 3) H(2)O(2) rapidly activated Ras (peak at 2-5 min), which preceded p90RSK activation (peak at 20 min). 4) Dominant negative Ras completely blocked H(2)O(2)-induced activation of p90RSK. 5) In Fyn-/- fibroblasts, activation of Ras by H(2)O(2) was significantly attenuated. These results show essential roles for Fyn and Ras in H(2)O(2)-mediated activation of p90RSK and establish redox-sensitive regulation of Ras and p90RSK as a new function for Fyn.