Objective: To evaluate the safety and immunogenicity of 6 different acellular pertussis vaccines combined with diphtheria and tetanus toxoids (DTaP) and with 1 licensed whole-cell pertussis vaccine (DTwP) as a fifth dose in children who had previously received the same DTaP, a different DTaP, or DTwP as primary and fourth-dose vaccinations.
Methods: Healthy 4- to 6-year-old children were enrolled at 5 National Institute of Allergy and Infectious Diseases Vaccine Treatment and Evaluation Units to receive a fifth dose of a DTaP or DTwP vaccine. All had been randomly assigned to receive 3 primary doses of DTaP or DTwP at 2, 4, and 6 months and a fourth-dose booster at 15 to 20 months of age as part of earlier National Institutes of Health multicenter acellular pertussis vaccine trials. Parents recorded the occurrence and magnitude of fever, irritability, and injection site redness, swelling, and pain for 3 days after vaccination. Sera obtained before and 1 month after the booster vaccination were analyzed by enzyme-linked immunosorbent assay for antibody to pertussis toxin, filamentous hemagglutinin, fimbriae, pertactin, and diphtheria and tetanus toxoid. Safety and/or immunogenicity data are reported for 317 children who received DTaP and 10 children who received DTwP.
Results: Fever and moderate or severe irritability were uncommon following the fifth dose of DTaP vaccine and were generally less frequent than following the fourth dose. However, for the DTaP vaccine groups, redness, swelling, and pain increased in prevalence compared with the fourth dose. The time course and frequency of reactions following DTaP vaccination were generally similar in children who received the same DTaP, a different DTaP, or DTwP for previous doses in the 5- dose series. No significant differences among the DTaP vaccines were detected in the occurrence of reactions, but the statistical power to detect differences was limited by sample size. Significant increases in antibodies directed against the included antigens were observed for all DTaP vaccines in paired pre- and post-fifth dose sera. Post-fifth dose antibody concentrations differed significantly among the DTaP vaccines. Some children in the study showed an antibody response to an antigen not reported to be in the DTaP vaccine.
Conclusion: All the studied DTaP vaccines performed similarly with regard to reactions, whether given as a fifth sequential dose of the same vaccine, a mix of different DTaP vaccines in the 5-dose sequence, or after 3 DTwP and 1 DTaP vaccinations. Large injection site reactions occurred more frequently after the fifth dose of DTaP than after the previous 4 doses. A fifth dose of all DTaP vaccines induced an antibody response to those antigens contained in the vaccine. No DTaP was consistently most or least reactogenic or immunogenic.