The mechanisms of multicomponent transcription factor complex assembly are currently poorly defined. A paradigm for this type of complex is the ETS-domain transcription factor Elk-1 and the MADS-box transcription factor SRF which form a ternary complex with the c- fos serum response element (SRE). In this study we have analysed how a different ETS-domain transcription factor Fli-1 interacts with SRF to form ternary complexes with this element. Two regions of Fli-1 that are required for ternary complex formation have been identified. These SRF binding motifs are located on either side of the ETS DNA-binding domain. Hydrophobic amino acids within these motifs have been identified that play important roles in binding to SRF and ternary complex formation. By using Fli-1 derivatives with mutations in the N-terminal SRF binding motif, the significance of Fli-1-SRF interactions in recruitment of Fli-1 to the c- fos SRE in vivo has been demonstrated. Collectively our data provide a model of how Fli-1 interacts with SRF that differs significantly from the mechanism used by a different ETS-domain protein, Elk-1.