In Xenopus eggs, metaphase II arrest is due to the cytostatic factor that maintains a high level of MPF activity. Kinases are important in this phenomenon since p39(mos) and MAPK play a part in the cytostatic activity whereas p34(cdc2) is the catalytic subunit of MPF. Fertilization induces a rise in intracellular calcium leading to egg activation that can be mimicked by calcium-increasing agents such as calcium ionophore. We have performed on Xenopus eggs a biochemical comparison of the effects of the kinase inhibitor 6-DMAP and the calcium ionophore. Both drugs were able to induce pronucleus formation but the underlying molecular events were different. The inactivation of MAPK occurred earlier in eggs exposed to 6-DMAP. Cyclins B1 and B2 were stable and p39(mos) was proteolysed in 6-DMAP-treated eggs while the three proteins underwent degradation in A23187-treated ones. These results suggest a differential regulation of ubiquitin-dependent proteolysis of cyclin B and p39(mos).
Copyright 1999 Academic Press.