The proliferation and metabolism of H4IIE hepatoma cells is apparently mediated through the insulin receptor. These cells, however, also have high-affinity binding sites for insulin-like growth factor-I (IGF-I). Addition of insulin to H4IIE cells increased RNA synthesis, DNA synthesis and cell number. IGF-I, on the other hand, was ineffective at concentrations equivalent to the lowest effective insulin dose, although stimulation was observed with concentrations 100-fold higher. Similar results were obtained when glucose uptake was measured. Western blot analysis demonstrated that tyrosine phosphorylation patterns produced by insulin and IGF-I differed. In particular, phosphorylation of insulin receptor substrate-1 (IRS-1) was evident after treatment with insulin, but not after treatment with IGF-I. Correspondingly, insulin, but not IGF-I, stimulated receptor tyrosine kinase activity. In contrast with these results, both insulin and IGF-I induced mitogen-activated protein (MAP) kinase phosphorylation and activity at a concentration of 10 nM. The correlation between insulin-dependent and IGF-I-dependent MAP kinase activation was confirmed by Western blot analysis of phosphorylated MAP kinase kinase (MEK). These results suggest that phosphorylation of IRS-1 is essential for both cell proliferation and glucose metabolism, but is uncoupled from the MAP kinase cascade. Furthermore, stimulation of MEK and MAP kinase is independent of receptor tyrosine kinase activity.