Acoustic plate modes (APM) on various quartz substrates have been investigated in order to determine their usefulness for liquid-sensing applications. The modes have been characterized in terms of their mass sensitivity, mode separation, temperature sensitivity, and reproducibility of the experimental results. Promising characteristics are found for rotated Y-cuts of quartz with the direction of acoustic mode propagation being perpendicular to the X-axis of the quartz crystal. Experiments on the detection of immunochemical reactions are performed using different quartz APM sensors, and the results are compared to similar experiments utilizing APM devices on ZX-LiNbO3.