Distribution and dynamics of laser-polarized (129)Xe magnetization in vivo

Magn Reson Med. 1999 Dec;42(6):1137-45. doi: 10.1002/(sici)1522-2594(199912)42:6<1137::aid-mrm19>3.0.co;2-4.

Abstract

The first magnetic resonance imaging studies of laser-polarized (129)Xe, dissolved in the blood and tissue of the lungs and the heart of Sprague-Dawley rats, are described. (129)Xe resonances at 0, 192, 199, and 210 ppm were observed and assigned to xenon in gas, fat, tissue, and blood, respectively. One-dimensional chemical-shift imaging (CSI) reveals xenon magnetization in the brain, kidney, and lungs. Coronal and axial two-dimensional CSI show (129)Xe dissolved in blood and tissue in the thorax. Images of the blood resonance show xenon in the lungs and the heart ventricle. Images of the tissue resonance reveal xenon in lung parenchyma and myocardium. The (129)Xe spectrum from a voxel located in the heart ventricle shows a single blood resonance. Time-resolved spectroscopy shows that the dynamics of the blood resonance match the dynamics of the gas resonance and demonstrates efficient diffusion of xenon gas to the lung parenchyma and then to pulmonary blood. These observations demonstrate the utility of laser-polarized (129)Xe to detect exchange across the gas-blood barrier in the lungs and perfusion into myocardial tissue. Applications to measurement of lung function, kidney perfusion, myocardial perfusion, and regional cerebral blood flow are discussed. Magn Reson Med 42:1137-1145, 1999.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Lasers
  • Magnetic Resonance Imaging*
  • Magnetic Resonance Spectroscopy / methods*
  • Male
  • Rats
  • Rats, Sprague-Dawley
  • Tissue Distribution
  • Xenon

Substances

  • Xenon