The myelin-associated glycoprotein is a transmembrane cell adhesion molecule expressed specifically by myelinating glial cells of the nervous system. Its two isoforms, whose amino acid sequences differ only by their respective cytoplasmic carboxy-terminal domains, are important for the formation and maintenance of a normal functional myelin sheath. In this study, by using recombinant proteins, we identify the cytoplasmic domain of the small isoform of the myelin-associated glycoprotein as a zinc-binding protein. The observed dissociation constant lies in the low micromolar range (K(D) = 6-7 microM). The binding of zinc by the small myelin-associated glycoprotein induces a conformational change that enables the protein to reversibly bind to a hydrophobic phenyl-Sepharose matrix. Our results also suggest that zinc may induce dimerization of the small myelin-associated glycoprotein. We suggest roles for zinc in the stabilization of the structure of the cytoplasmic domain of the small myelin-associated glycoprotein and in protein-protein interactions that involve this short domain.