We earlier demonstrated that leptin induces expression of SOCS-3 mRNA in the hypothalamus. Furthermore, transfection data suggest that SOCS-3 is an inhibitor of leptin signaling. However, little is known about the regulation of SOCS-3 expression by leptin and the mechanism by which SOCS-3 inhibits leptin action. We here show that in CHO cells stably expressing the long form of the leptin receptor (CHO-OBRl), leptin induces transient expression of endogenous SOCS-3 mRNA but not of CIS, SOCS-1, or SOCS-2 mRNA. SOCS-3 protein levels were maximal after 2-3 h of leptin treatment and remained elevated at 20 h. Furthermore, in leptin-pretreated CHO-OBRl cells, proximal leptin signaling was blocked for more than 20 h after pretreatment, thus correlating with increased SOCS-3 expression. Leptin pretreatment did not affect cell surface expression of leptin receptors as measured by (125)I-leptin binding assays. In transfected COS cells, forced expression of SOCS-3 results in inhibition of leptin-induced tyrosine phosphorylation of JAK2. Finally, JAK2 co-immunoprecipitates with SOCS-3 in lysates from leptin-treated COS cells. These results suggest that SOCS-3 is a leptin-regulated inhibitor of proximal leptin signaling in vivo. Excessive SOCS-3 activity in leptin-responsive cells is therefore a potential mechanism for leptin resistance, a characteristic feature in human obesity.