Cultures of primary rat dorsal root ganglia neurones were inoculated with various doses of herpes simplex virus mutants deficient in glycoproteins B, D, H, C, G, E, I or J, and the proportion of infected neurones was determined. The behaviour of these mutants on primary neurones was broadly similar to their behaviour on fibroblasts or epithelial cells. Thus, virions lacking the 'nondispensable' glycoproteins B, D or H were incapable of infecting primary neurones, whereas mutants lacking glycoproteins G, E, I or J infected primary neurones with the same efficiency as wild-type virions. Two independently derived mutants lacking gC displayed a marginal phenotype, infecting neurones with a five- to tenfold reduced efficiency relative to wild-type virus and relative to non-neuronal cells in the same cultures. We conclude that the virion glycoprotein requirements for infection of mammalian neurones are similar to those required for infection of fibroblasts and epithelial cells but that glycoprotein C may enhance infection of neurones.