An event-related protocol was designed to permit auditory fMRI studies minimally affected by the echo-planar noise artifact; a long time interval (TR = 10 s) between each cerebral volume acquisition was combined with stroboscopic data acquisition, and event-related curves were reconstructed with a 1-s resolution. The cerebral hemodynamic-response time course to a target auditory stimulus was measured in five individual subjects using this method. Clear bell-shaped event-related responses were observed bilaterally in all individuals in primary auditory cortex (A1) as well as in laterally extending secondary cortical fields. Group-average event-related curves attained their maxima (0.5-0.7%) 3 s after stimulus onset in A1 (4 s for more anterior and lateral regions of auditory cortex), and signal had returned to near-baseline level 6 s after stimulus onset. The stroboscopic event-related method appeared effective in minimizing effects of the interaction between scanning noise and experimental auditory stimulation; it adds useful temporal information to the spatial resolution afforded by fMRI in studies of human auditory function, while allowing presentation of auditory stimuli on a silent background.
Copyright 1999 Academic Press.