Brain function and laterality in schizophrenia were investigated by means of a simple motor task with a self-generated left-hand sequential finger opposition (SFO) using a whole-brain high-speed (100 ms per slice) functional imaging technique. Neuroleptic-naïve, acutely ill schizophrenic patients were compared to schizophrenic patients under stable neuroleptic medication and matched controls. The goal was to evaluate both the motor function in first-episode patients and possible effects of different neuroleptic treatments on functional MRI results. Forty patients satisfying ICD 10 criteria (F20.x) for schizophrenia and sex- and age-matched healthy volunteers participated in this study. All subjects underwent fMRI examinations on a conventional 1.5 T MR unit. The primary sensorimotor cortex and the high-order supplementary motor area (SMA) were evaluated. There was a close similarity in the activation of the primary and high-order (SMA) sensorimotor areas between first-episode schizophrenic patients and controls. In contrast, a significant reduction in the overall blood oxygen level dependent (BOLD) response was seen in sensorimotor cortices (contra- and ipsilateral) in schizophrenic patients under stable medication with typical neuroleptics. This effect was not present in patients treated with atypical antipsychotics. Both antipsychotic treatments, however, led to a significant reduction in activation of the SMA region compared to controls and neuroleptic-naïve subjects. Thus, the present study provides no evidence for the localized involvement of the primary motor cortex or the SMA as a relatively stable vulnerability marker in schizophrenia. There is, however, strong evidence that neuroleptics themselves influence fMRI activation patterns and that there are major differences between typical neuroleptics and atypical antipsychotics.