Background and aim: Substantial evidence suggests that oxidative modifications of low density lipoproteins (LDL) critically contribute to the pathogenesis and progression of human atherosclerosis. Oxidized LDL (oxLDL) are present in atherosclerotic plaques and contain oxysterols that exhibit a variety of adverse biological activities. Antioxidants have also been shown to prevent LDL modification. We have therefore assessed the efficacy of virgin olive oil phenolic compounds in preventing oxidative modifications of human LDL oxidized by UV light.
Methods and results: Cholesterol oxides formed during LDL photo-oxidation were determined by UV-HPLC in the presence of different concentrations of phenolic compounds and their pure components (tyrosol and oleuropein), and probucol, a widely used synthetic antioxidant. Electrophoretic mobility was also assayed. The results demonstrate that phenolic compounds are much more potent in preventing cholesterol oxide formation and apoproteic moiety modification than their pure components and probucol.
Conclusions: The beneficial effects of a Mediterranean diet may be ascribable not only to the high unsaturated/saturated fatty acid ratio characteristic of olive oil, but also to the unique antioxidant properties of its phenolic compounds.