A high cytoplasmic Na(+) concentration may contribute to N-methyl-D-aspartate (NMDA)-induced excitotoxicity by promoting Ca(2+) influx via reverse operation of the Na(+)/Ca(2+) exchanger (NaCaX), but may simultaneously decrease the electrochemical Ca(2+) driving force by depolarizing the plasma membrane (PM). Digital fluorescence microscopy was used to compare the effects of Na(+) versus ions that do not support the NaCaX operation, i.e., N-methyl-D-glucamine(+) or Li(+), on: PM potential; cytoplasmic concentrations of Ca(2+), H(+), and K(+); mitochondrial Ca(2+) storage; and viability of primary cultures of cerebellar granule cells exposed to NMDA receptor agonists. In the presence of Na(+) or Li(+), NMDA depolarized the PM and decreased cytoplasmic pH (pH(C)); in the presence of Li(+), Ca(2+) influx was reduced, mitochondrial Ca(2+) overload did not occur, and the cytoplasm became more acidified than in the presence of Na(+). In the presence of N-methyl-D-glucamine(+), NMDA instantly hyperpolarized the PM, but further changes in PM potential and pH(C) were Ca-dependent. In the absence of Ca(2+), hyperpolarization persisted, pH(C) was decreasing very slowly, K(+) was retained in the cytoplasm, and cerebellar granule cells survived the challenge; in the presence of Ca(2+), pH(C) dropped rapidly, the K(+) concentration gradient across the PM began to collapse as the PM began to depolarize, and Ca(2+) influx and excitotoxicity greatly increased. These results indicate that the dominant, very likely excitotoxic, component of NMDA-induced Ca(2+) influx is mediated by reverse NaCaX and that direct Ca(2+) influx via NMDA channels is curtailed by Na-dependent PM depolarization.