Cells from cancers show aberrant behaviour such as unrestrained growth, invasion into adjacent tissue and metastasis. All these features of cancer cell behaviour can be explained in terms of genetic changes and the functional impact of these changes. In this review, colorectal cancer (CRC) is examined as a classical example of multistep carcinogenesis. First there is an overview which shows that cancers develop by a process of somatic evolution. This gives rise to preferred genetic pathways of tumorigenesis. The factors which may influence the development and ultimate choice of genetic pathways are then examined. Next, CRC is studied as a specific disease and the putative genetic pathways are described. The mutations that comprise these pathways and the possible functional sequelae of these are explored. The review concludes with a look at those avenues which may further elucidate the natural history of CRC and lead to improved therapy.