The activity of hindlimb motor units from the lateral gastrocnemius and tibialis anterior muscles in the awake rat was compared during locomotion and during slow, sinusoidal muscle stretch. The majority of units were activated with high initial frequencies and often commenced firing with an initial doublet or triplet, even when activated by slow muscle stretch. The high firing rates at recruitment occurred without jumps in the firing rates of other concurrently activated units, the firing rate profiles of which were used as a measure of the net synaptic drive onto the motoneuronal pool. This suggested that the sharp recruitment jumps were not due to an abrupt increase in synaptic drive but rather due to intrinsic properties of the motoneuron. In addition, motor units that were activated phasically by the muscle stretch fired more action potentials during muscle shortening than during muscle lengthening, resulting in rightwardly skewed, asymmetrical firing profiles. In contrast, when the same units fired tonically during the imposed muscle stretch, the frequency profiles were modulated symmetrically and no nonlinearities were observed. Tonically firing units were modulated symmetrically throughout a wide range of firing frequencies, and discrete jumps in rate (i.e., bistable firing) were not observed. The sharp recruitment jumps during locomotion and muscle stretch are proposed to have resulted from the additional depolarization produced by the activation of plateau potentials at recruitment. Likewise, the sustained activation of plateaus subsequent to recruitment may have produced the prolonged firing of the motor units during sinusoidal muscle stretch.