The multifunctional cytokine interleukin-6 (IL-6) regulates growth and differentiation of many cell types and induces production of acute-phase proteins in hepatocytes. Here we report that IL-6 protects hepatoma cells from apoptosis induced by transforming growth factor-beta (TGF-beta), a well known apoptotic inducer in liver cells. Addition of IL-6 blocked TGF-beta-induced activation of caspase-3 while showing no effect on the induction of plasminogen activator inhibitor-1 and p15(INK4B) genes, indicating that IL-6 interferes with only a subset of TGF-beta activities. To further elucidate the mechanism of this anti-apoptotic effect of IL-6, we investigated which signaling pathway transduced by IL-6 is responsible for this effect. IL-6 stimulation of hepatoma cells induced a rapid tyrosine phosphorylation of the p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase) and its kinase activity followed by the activation of Akt. Inhibition of PI 3-kinase by wortmannin or LY294002 abolished the protection of IL-6 against TGF-beta-induced apoptosis. A dominant-negative Akt also abrogated this anti-apoptotic effect. Dominant-negative inhibition of STAT3, however, only weakly attenuated the IL-6-induced protection. Finally, inhibition of both STAT3 and PI 3-kinase by treating cells overexpressing the dominant-negative STAT3 with LY294002 completely blocked IL-6-induced survival signal. Thus, concomitant activation of the PI 3-kinase/Akt and the STAT3 pathways mediates the anti-apoptotic effect of IL-6 against TGF-beta, with the former likely playing a major role in this anti-apoptosis.