Recent data have identified IL-9 as a key cytokine in determining susceptibility to asthma. These data are supported by the finding that allergen-exposed IL-9-transgenic mice exhibit many features that are characteristic of human asthma (airway eosinophilia, elevated serum IgE and bronchial hyperresponsiveness) as compared to the background strain. A striking feature of these animals is a robust peribronchial and perivascular eosinophilia after allergen challenge, suggesting that IL-9 is a potent factor in regulating this process. In an attempt to gain insights into the molecular mechanism governing IL-9 modulation of lung eosinophilia, we investigated the ability of this cytokine to induce the expression of CC-type chemokines in the lung because of their effect on stimulating eosinophil chemotaxis. Here we show that IL-9-transgenic mice in contrast to their congenic controls exhibit baseline lung eosinophilia that is associated with the up-regulation of CC-chemokine expression in the airway. This effect appears to be through a direct action of IL-9 because the addition of recombinant IL-9 to primary epithelial cultures and cell lines induced the expression of these chemokines in vitro. These data support a mechanism for IL-9 in regulating the expression of eosinophil chemotactic factors in lung epithelial cells.