The adenovirus E1A protein has been implicated in increasing cellular susceptibility to apoptosis induced by tumor necrosis factor (TNF); however, its mechanism of action is still unknown. Since activation of nuclear factor kappaB (NF-kappaB) has been shown to play an anti-apoptotic role in TNF-induced apoptosis, we examined apoptotic susceptibility and NF-kappaB activation induced by TNF in the E1A transfectants and their parental cells. Here, we reported that E1A inhibited activation of NF-kappaB and rendered cells more sensitive to TNF-induced apoptosis. We further showed that this inhibition was through suppression of IkappaB kinase (IKK) activity and IkappaB phosphorylation. Moreover, deletion of the p300 and Rb binding domains of E1A abolished its function in blocking IKK activity and IkappaB phosphorylation, suggesting that these domains are essential for the E1A function in down-regulating IKK activity and NF-kappaB signaling. However, the role of E1A in inhibiting IKK activity might be indirect. Nevertheless, our results suggest that inhibition of IKK activity by E1A is an important mechanism for the E1A-mediated sensitization of TNF-induced apoptosis.