The heat shock transcription factor Hsf1p and the stress-responsive transcription factors Msn2p and Msn4p are activated by heat shock in the yeast Saccharomyces cerevisiae. Their respective contributions to heat shock protein induction have been analysed by comparison of mutants and wild-type strains using [35S]-methionine labelling and two-dimensional gel electrophoresis. Among 52 proteins induced by a shift from 25 degrees C to 38 degrees C, half of them were found to be dependent upon Msn2p and/or Msn4p (including mostly antioxidants and enzymes involved in carbon metabolism), while the other half (including mostly chaperones and associated proteins) were dependent upon Hsf1p. The two sets of proteins overlapped only slightly. Three proteins were induced independently of these transcription factors, suggesting the involvement of other transcription factor(s). The Ras/cAMP/PKA signalling pathway cAMP had a negative effect on the induction of the Msn2p/Msn4p regulon, but did not affect the Hsf1p regulon. Thus, the two types of transcription factor are regulated differently and control two sets of functionally distinct proteins, suggesting two different physiological roles in the heat shock cellular response.