Exertion symptoms occur frequently in subjects with hyperthyroidism. Using stress echocardiography, exercise capacity and global left ventricular function can be assessed noninvasively. To evaluate stress-induced changes in cardiovascular function, 42 patients with untreated thyrotoxicosis were examined using exercise echocardiography. Studies were performed during hyperthyroidism, after treatment with propranolol, and after restoration of euthyroidism. Twenty-two healthy subjects served as controls. Ergometry was performed with patients in a semisupine position using a continuous ramp protocol starting at 20 watts/min. In contrast to control and euthyroidism, the change in end-systolic volume index from rest to maximal exercise was lower in hyperthyroidism. At rest, the stroke volume index, ejection fraction, and cardiac index were significantly increased in hyperthyroidism, but exhibited a blunted response to exercise, which normalized after restoration of euthyroidism. Propranolol treatment also led to a significant increase of delta (delta) stroke volume index. Maximal work load and delta heart rate were markedly lower in hyper- vs. euthyroidism. Compared to the control value, systemic vascular resistance was lowered by 36% in hyperthyroidism at rest, but no further decline was noted at maximal exercise. The delta stroke volume index, delta ejection fraction, delta heart rate, and maximal work load were significantly reduced in severe hyperthyroidism. Negative correlations between free T3 and diastolic blood pressure, maximal work load, delta heart rate, and delta ejection fraction were noted. Thus, in hyperthyroidism, stress echocardiography revealed impaired chronotropic, contractile, and vasodilatatory cardiovascular reserves, which were reversible when euthyroidism was restored.