Although important advances have been made in the development of antibiotics and medical intensive care technology in recent years, systemic response to infection remains a major health problem, with growing incidence and high mortality rates. Here we demonstrate the ability of the antioxidant agent pyrrolidine dithiocarbamate (PDTC) to inhibit the in vivo activation of NF-kappaB in lung and liver tissues, as well as the systemic release of TNF-alpha in lipopolysaccharide (LPS)-treated mice. The in vivo effect of PDTC on NF-kappaB activation in liver tissues involved the inhibition of both LPS-induced I kappaB-alpha degradation and the translocation of the p50 and p65 NF-kappaB subunits to the nucleus. In addition to protecting mice against lethal LPS doses, PDTC curtailed TNF-alpha-induced lethal shock. This effect was observed even after LPS injection, and when PDTC was administered at a time when TNF-alpha was already at maximum levels in serum. PDTC-treated mice survived despite high IL-1beta and IL-6 levels, induction of VCAM-1 and ICAM-1 expression or leukocyte infiltration in tissues known to be associated with LPS-induced shock, indicating that PDTC does not act by modifying these responses. Taken together, these results indicate that PDTC interferes with the production as well as the action of TNF-alpha, and points to a possible approach toward the treatment of septic shock.