Aim: To evaluate the ability of confocal scanning laser tomography of the optic nerve head to detect glaucomatous optic nerve damage in ocular hypertensive eyes without visual field defects.
Methods: The study included 50 normal subjects, 61 glaucoma patients with glaucomatous changes in the optic disc and visual field, and 102 "preperimetric" patients with increased intraocular pressure, normal visual fields, and glaucomatous appearance of the optic disc as evaluated on colour stereo optic disc photographs. For all individuals, confocal scanning laser tomographs of the optic nerve head were taken using the Heidelberg retina tomograph (HRT; software 2.01).
Results: Almost all investigated HRT variables varied significantly (p < 0.05) between the normal eyes and preperimetric glaucoma eyes with pronounced overlap between the two study groups. Corresponding to the overlap, sensitivity and specificity values were relatively low when HRT variables were taken to differentiate between normal and preperimetric glaucoma eyes. At a given specificity of 95% highest sensitivities were found for the variables "rim area in the superior disc sector" (24.8%), "nerve fibre layer thickness in the inferior disc sector" (26.5%), and "rim volume in the superior disc sector" (25.5%). A multivariate approach increased sensitivity to 42.2% at a given specificity of 95%. For the glaucoma group highest sensitivity values were reached by rim volume in the superior disc sector (73.8%) and rim area (72.1%); the multivariate approach reached 83.6%.
Conclusions: Owing to pronounced overlapping between the groups, confocal scanning laser tomography of the optic nerve head has relatively low diagnostic power to differentiate between normal eyes and preperimetric glaucoma eyes. One of the reasons may be the biological interindividual variability of quantitative optic disc variables.