The results of our previous analyses suggest that O-2A progenitor cells become competent for differentiation in vitro after they complete a certain number of critical mitotic cycles. The number of critical cycles varies from clone to clone and should be thought of as a random variable. We propose an approach to the analysis of oligodendrocyte generation in vitro based on a stochastic model allowing for an arbitrary distribution of this random variable with a finite support. When applied to experimental data on clonal growth and differentiation of purified O-2A progenitor cells obtained from optic nerves of 1 and 7 day-old rats, the model provides a good quantitative description not only of the first two moments (mean and variance) of the number of O-2A progenitor cells and oligodendrocytes at different times after the start of experiment, but of the corresponding distributions as well. As our estimates show, there are scarcely any O-2A progenitor cells that divide in vitro more than twice before they acquire the competence for differentiation. Those O-2A cells that have undergone the critical divisions differentiate into an oligodendrocyte in each of the subsequent mitotic cycles with a certain probability. We give estimates of this probability for O-2A cells under different growth conditions. Our analysis suggests that the effect of thyroid hormone is twofold: it reduces the mean duration of the mitotic cycle for progenitor cells, and it increases the probability of their transformation into oligodendrocytes.