P2X receptors present in cerebellar Purkinje cells have been studied by recording ATP-elicited [Ca2+]i signals from immuno-identified (calbindin+) cells in culture using fura-2 microfluorescence. The [Ca2+]i increases evoked by ATP were mimicked by 2MeSATP but not by alpha, beta-meATP and other purinoceptor agonists. The selective P2X1 antagonist diinosine pentaphosphate failed to inhibit ATP-elicited [Ca2+]i transients, but suramin and PPADS rapidly and reversibly blocked the [Ca2+]i responses to ATP and 2MeSATP. The IC50 values for suramin and PPADS inhibition were 48.7 +/- 4.4 and 5.9 +/- 0.3 microM, respectively. Both antagonists blocked completely the signal elicited by ATP, revealing that there was not a separate antagonist-insensitive P2X receptor population in Purkinje cells. The effect of ATP was potentiated by Zn2+ and H+ ions. A one unit acidification from pH 7.4 to 6.4 enhanced by 172% the [Ca2+]i transient elicited by an intermediate concentration of ATP. Conversely, alkalinization of the medium to pH 8.4 reduced the ATP response by 88%. This combination of pharmacological and modulatory properties indicates that endogenous P2X receptors present in Purkinje neurons are formed by P2X2 subunits, rather than the more abundantly expressed P2X4 purinoceptor subunits.