There has been considerable progress made over the past year in linking experimental and theoretical approaches to protein folding. Recent results from several independent lines of investigation suggest that protein folding mechanisms and landscapes are largely determined by the topology of the native state and are relatively insensitive to details of the interatomic interactions. This dependence on low-resolution structural features, rather than high-resolution detail, suggests that it should be possible to describe the fundamental physics of the folding process using relatively low-resolution models. Recent experiments have set benchmarks for testing new models and progress has been made in developing theoretical models for interpreting and predicting experimental results.