Interferon regulatory factor 1 (IRF-1) transcription factor binds to DNA sequence elements found in the promoters of type I IFN and IFN-inducible genes. Transient up-regulation of the IRF-1 gene by virus and IFN treatment causes the consequent induction of many IFN-inducible genes involved in cell growth control and apoptosis. We reported recently that IFN-alpha and all-trans retinoic Acid (RA) inhibit the cell proliferation of squamous carcinoma cell line ME-180 by inducing apoptotic cell death. IRF-1 expression correlates with the IFN-alpha-induced apoptosis phenomenon and, surprisingly, with the RA-induced apoptosis phenomenon. To study how these two different ligands cross-talk in the regulation of cellular antitumor responses, the signalling pathways involved in IRF-1 induction were analyzed in RA and/or IFN-alpha-treated ME-180 cells. We provide evidence indicating that RA-induced IRF-1 gene expression is independent of the STAT-1 activation pathway, despite the presence of the IFN-gamma activated sequence element in the gene promoter, but involves nuclear factor-kappaB activation. Thus, here we first describe the activation of nuclear factor-kappaB by both IFN-alpha and RA in the ME-180 cell line. The induced IRF-1 protein is successively able to bind the IFN-stimulated responsive element in the promoter of the target gene 2',5'-oligoadenylate synthetase.