Wolbachia endosymbiotic bacteria have been shown to be widespread among filarial worms and could thus play some role in the biology of these nematodes. Indeed, tetracycline has been shown to inhibit both the development of adult worms from third-stage larvae and the development of the microfilaraemia in jirds infected with Brugia pahangi. The possibility that these effects are related to the bacteriostatic activity of tetracycline on Wolbachia symbionts should be considered. Here we show that tetracycline treatment is very effective in blocking embryo development in two filarial nematodes, B. pahangi and Dirofilaria immitis. Embryo degeneration was documented by TEM, while the inhibition of the transovarial transmission of Wolbachia was documented by PCR. Phylogenetic analysis on the ssrDNA sequence of the Wolbachia of B. pahangi confirms that the phylogeny of the bacterial endosymbionts is consistent with that of the host worms. The possibility that tetracycline inhibition of embryo development in B. pahangi and D. immitis is determined by cytoplasmic incompatibility is discussed.