We outline the mathematical distinctions among seven of the most popular computer programs currently used to analyze the spatial arrangements of bases and base pairs in nucleic acid helical structures. The schemes fall into three basic categories on the basis of their definitions of rotational parameters: matrix-based, projection-based, and combined matrix- and projection-based. The approaches also define and construct base and base-pair coordinate frames in a variety of ways. Despite these mathematical distinctions, the computed parameters from some programs are strongly correlated and directly comparable. By contrast, other programs which use identical methodologies sometimes yield very different results. The choice of reference frame rather than the mathematical formulation has the greater effect on calculated parameters. Any factor which influences the reference frame, such as fitting or not fitting standard bases to the experimentally derived coordinates, will have a noticeable effect on both complementary base pair and dimer step parameters.