A growing number of calcitriol (1alpha,25-dihydroxyvitamin D3) analogs have become available in recent years. Many of these analogs exhibit lower calcemic effects than calcitriol and inhibit cell proliferation and enhance cell differentation more efficiently than calcitriol. We have compared structure-function relationships of a series of new C-20 epimer (20-epi) vitamin D3 analogs with their natural C-20 counterparts. In human MG-63 osteosarcoma cells, quantification of cellular osteocalcin mRNA levels by Northern blot analysis and osteocalcin biosynthesis by radioimmunoassay indicated that most studied analogs at a concentration of 10 nm induced osteocalcin gene expression more efficiently than the parent compound, calcitriol. Interestingly, when the biological responses were compared with the binding affinities of the analogs to in-vitro translated human vitamin D receptor and with their ability to protect the receptor against partial proteolytic digestion, significant correlations were not observed. Further, molecular modelling of the compounds by energy minimization did not reveal marked differences in the three-dimensional structures of the analogs. These results suggest that higher than normal ligand binding affinity or 'natural' conformation of the ligand-receptor complex are not necessarily required for the 'superagonist' transactivation activity. The mechanism of action of the efficient analogs may involve stabilization and/or differential binding of transcriptional coactivators or transcription intermediary factors to the hVDR during transactivation.