The enzymatic fundamentals of lipid metabolism of equine have not been thoroughly investigated at this point in time. It is still unclear why ponies in contrast to horses may become hyperlipaemic when coming negative energy balance. In this study, the activities of the triglyceride-cleaving key enzymes of ponies are large bred horses were investigated in order to obtain insight into the aetiology of the syndrome. The objective of the study was to measure the activities of hormone-sensitive lipase (HSL), lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) in ponies and horses in ex vivo in vitro assays. Norepinephrine (NE) stimulated pony adipocytes to release FFA in a linear fashion (4.57 +/- 2.09 nmol FFA.10(5) cells-1.min-1). This was not observed in horses. Lipolysis was significantly higher in fat cells of ponies than in horses when adenosine deaminase (ADA) and NE were added (12.71 +/- 3.12 vs. 1.96 +/- 1.22 nmol FFA.10(5) cells-1.min-1). Relative inhibition of lipolysis by the action of insulin was comparable in adipocytes of horses and ponies. However, absolute FFA release in pony fat cells was as high as the maximal NE and ADA stimulated lipolysis in horse adipocytes. Postheparin plasma lipase activities in ponies and horses did not differ between the sub-species. This finding was supported by the results obtained from measurement of LPL activity in adipose and muscle tissue showing only a tendency of increased activities in pony explants when compared to horse tissue incubations. This study further supports the hypothesis that differences in regulation of TG release from fat stores rather than clearance of TG from plasma is causative for the development of hyperlipaemia in ponies. Abbreviations used: ADA, adenosine deaminase; BW, body weight; FFA, free fatty acid; HSL, hormone-sensitive lipase; HTGL, hepatic triglyceride lipase; LPL, lipoprotein lipase; NE, norepinephrine; SDS, sodium dodecyl sulfate; TG, triglyceride; VLDL, very low density lipoprotein.