To analyze the role of specific genes and proteins in neuronal signaling cascades following global cerebral ischemia, it would be useful to have a reproducible model of global cerebral ischemia in mice that potentially allows the investigation of mice with specific genomic mutations. We first report on the development of a model of reversible cardiocirculatory arrest in mice and the consequences of such an insult to neuronal degeneration and expression of immediate early genes (IEG) in the hippocampus. Cardiocirculatory arrest of 5 min duration was induced via ventricular fibrillation in mechanically ventilated NMRI mice. After successful cardiopulmonary resuscitation (CPR), animals were allowed to reperfuse spontaneously for 3 h (n=7) and 7 days (n=7). TUNEL staining revealed a selective degeneration of a subset of neurons in the hippocampal CA1 sector at 7 days. About 30% of all TUNEL-positive nuclei showed condensed chromatin and apoptotic bodies. Immunohistochemical studies of IEG expression performed at 3 h exhibited a marked induction of c-Fos, c-Jun, and Krox-24 protein in all sectors of the hippocampus, peaking in vulnerable CA1 pyramidal neurons and in dentate gyrus. In contrast, sham-operated animals (n=3) did not reveal neuronal degeneration or increased IEG expression in the hippocampus when compared with untreated control animals (n=3). In conclusion, we present a new model of global cerebral ischemia and reperfusion in mice with the use of complete cardiocirculatory arrest and subsequent CPR. Following 5 min of ischemia, a subset of CA1 pyramidal neurons was TUNEL-positive at 7 days. The expression of IEG was observed in all sectors of the hippocampus, including selectively vulnerable CA1 pyramidal neurons. This appears to be a good model which should be useful in evaluating the role of various genes in transgenic and knockout mice following global ischemia.
Copyright 1999 Elsevier Science B.V.