An Lrp-like protein of the hyperthermophilic archaeon Sulfolobus solfataricus which binds to its own promoter

J Bacteriol. 1999 Mar;181(5):1474-80. doi: 10.1128/JB.181.5.1474-1480.1999.

Abstract

Regulation of gene expression in the domain Archaea, and specifically hyperthermophiles, has been poorly investigated so far. Biochemical experiments and genome sequencing have shown that, despite the prokaryotic cell and genome organization, basal transcriptional elements of members of the domain Archaea (i.e., TATA box-like sequences, RNA polymerase, and transcription factors TBP, TFIIB, and TFIIS) are of the eukaryotic type. However, open reading frames potentially coding for bacterium-type transcription regulation factors have been recognized in different archaeal strains. This finding raises the question of how bacterial and eukaryotic elements interact in regulating gene expression in Archaea. We have identified a gene coding for a bacterium-type transcription factor in the hyperthermophilic archaeon Sulfolobus solfataricus. The protein, named Lrs14, contains a potential helix-turn-helix motif and is related to the Lrp-AsnC family of regulators of gene expression in the class Bacteria. We show that Lrs14, expressed in Escherichia coli, is a highly thermostable DNA-binding protein. Bandshift and DNase I footprint analyses show that Lrs14 specifically binds to multiple sequences in its own promoter and that the region of binding overlaps the TATA box, suggesting that, like the E. coli Lrp, Lrs14 is autoregulated. We also show that the lrs14 transcript is accumulated in the late growth stages of S. solfataricus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Archaeal Proteins*
  • Base Sequence
  • Binding Sites
  • Consensus Sequence
  • DNA, Archaeal / chemistry
  • DNA, Archaeal / genetics
  • DNA-Binding Proteins / chemistry
  • DNA-Binding Proteins / genetics*
  • DNA-Binding Proteins / metabolism*
  • Gene Expression Regulation, Archaeal*
  • Helix-Turn-Helix Motifs
  • Low Density Lipoprotein Receptor-Related Protein-1
  • Molecular Sequence Data
  • Open Reading Frames
  • Operon*
  • Receptors, Immunologic / genetics
  • Sequence Alignment
  • Sequence Homology, Amino Acid
  • Sulfolobus / genetics*
  • Sulfolobus / metabolism*
  • TATA Box
  • Transcription Factors / chemistry
  • Transcription Factors / genetics*
  • Transcription Factors / metabolism*
  • Transcription, Genetic*

Substances

  • Archaeal Proteins
  • DNA, Archaeal
  • DNA-Binding Proteins
  • Low Density Lipoprotein Receptor-Related Protein-1
  • Lrs14 protein, Sulfolobus solfataricus
  • Receptors, Immunologic
  • Transcription Factors

Associated data

  • GENBANK/AF098294