Multiple endocrine neoplasia type 2B (MEN2B) is an autosomal dominant syndrome characterized by the development of medullary thyroid carcinoma, pheochromocytomas, musculoskeletal anomalies and mucosal ganglioneuromas. MEN2B is caused by a specific mutation (Met918-->Thr) in the RET receptor tyrosine kinase. Different mutations of RET lead to other conditions including MEN2A, familial medullary thyroid carcinoma and intestinal aganglionosis (Hirschsprung disease). Transgenic mice were created using the dopamine beta-hydroxylase promoter to direct expression of RET(MEN2B) in the developing sympathetic and enteric nervous systems and the adrenal medulla. DbetaH-RET(MEN2B) transgenic mice developed benign neuroglial tumors, histologically identical to human ganglioneuromas, in their sympathetic nervous systems and adrenal glands. The enteric nervous system was not affected. The neoplasms in DbetaH-RET(MEN2B) mice were similar to benign neuroglial tumors induced in transgenic mice by activated Ras expression under control of the same promoter. Levels of phosphorylated MAP kinase were not increased in the RET(MEN2B)-induced neurolglial proliferations, suggesting that alternative pathways may play a role in the pathogenesis of these lesions. Transgenic mice with the highest levels of DbetaH-RET(MEN2B) expression, unexpectedly developed renal malformations analogous to those reported with loss of function mutations in the Ret gene.